¢ L]
DISTR,EJTICN

{!,.t' IR
oo idwa bt 1

DEHENCE RESEARCH ESTABLISHMENT

HILANTIC
N
Y
" SOME SIMPLE FORMULAE FOR
o NORMAL MODE WAVE NUMBERS, CUTOFF FREQUENCIES,
=T AND THE NUMBER OF MODES TRAPPED
= BY A SOUND CHANNEL
S
Q.
S
; DTIC
: i ELECTEgW
; i Srga 251693 D

DTIC r

D

D.R.E. A, TECHNICAL MEMORANDUM 82 /0

RESEARCH AND DEVELOPMENT BRANCH
DEPARTMENT OF NATIONAL DEFENCE

CANADA : A 4

-y PR ey




T —
. . el e e
I a s

DEFENCE RESEARCH ESTABLISHMENT
ATLANTIC

DARTMOUTH N.S.
\ D RE A TECHNICAL MEMORANDUM 82/ O

D —

SOME SIMPLE FORMULAE FOR
NORMAL MODE WAVE NUMBERS, CUTOFF FREQUENCIES,
AND THE NUMBER OF MODES TRAPPED
BY A SOUND CHANNEL*

Dale D. Ellis

November 1982

A

Aporcved oy R.F. Brown Director | Underwater Acoustics Division

DISTRIBUTICN APPROVED 8Y gd‘o"% S

CHIEF O.R.E.A.

RESEARCH AND DEVELOPMENT BRANCH
DEPARTMENT OF NATIONAL DEFENCE

CANADA

* Presented at the 101st meating of the Acoustica! Socisty of America in
Ottawa, 18-22 May, 1981.




ABSTRACT

To a good first approximation acoustic propagation in an underwater sound
channel is dominated by a finite number of trapped modes. However, exact solutions
are known for only a few special cases, making it necessary in general to use
numerical methods to soilve the normal mode equation. But often one is interested only
in the gross features, such as the number of modes or cutoff frequencies, and one
does not need the detail provided by a complete normal mode calculation. Even if a
normal mode calculation is desired, the computation time can be reduced considerably if
the mode wavenumbers can be estimated in advance. In such a case, the WKB method
can be used to obtain formulae which, although they are approximate, are given in
closed form. In this paper formulae based on exact and WKB solutions are presented
for the number of modes trapped in some simple sound channels and for the wave
numbers and cutoff frequencies associated with these modes. The number of trapped
modes is shown to depend on the gross features of the sound channel, while the
distribution of modai wave numbers depends to a greater degree on the details of the
sound speed profile shape.
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RESUME

Dans une bonne premiere approximation, la propagation acoustique dans un canal
de son sous-marin est dominée par un nombre fini de modes piegés. Cepandant, des
solutions exactes ne sont connues que pour quelques cas speciaux, ce qui oblige en
genéral a utiliser des méthodes numériques pour résoudre |'equation du mode normal.
Souvent pourtant, le chercheur ne s'intéresse qu'aux caractéristiques brutes comme le
nombre de modes ou les frequences de coupure et il n'a pas besoin de la quantite de
datails fournie par un calcul complet du mode normal. Mé@me, lorsqu'un calcu du mode
i normal est voulu, le temps de calcul peut 8tre considerablement réeduit si les nombres
d'onde du mode peuvent 8tre estimés auparavant. Dans un tel cas, la mé@thode WKB
) peut servir a obtenir des formules qui, bien qu'elles soient approximatives, se
X présentent sous une forme fermee. Dans cette communication, I'auteur presente des
‘ formules basees sur des solutions exactes et sur des approximations WKB pour le

nombre de modes piegés dans des canaux de son simple et pour les nombres d'onde et
les frequences de coupure lies a ces modes. |l demontre que le nombre de modes
- piegas depend des caractéristiques brutes du canai de son, tandis que la distribution

- des nombres d'onde modaux dépend dans une plus grande mesure des datails de la
- forme du profil de la vitesse du son.
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1 introduction

Acoustic propagation in an underwater sound channei is dominated by a finite number of
trapped modes whose wavenumbers depend on the sound speed profile in the channel. Exact
solutions are known for only a few special profiles, making it nacassary in general to use numarical
methods to soive the normal mode equation. But often one is interested only in the gross features,
such as the number of modes or the cutoff frequencies, and one does not need the detail provided
by a compiete normai mode calculation. Moreover, even if a normal mode calculation is desired, the
computation time can be reduced considerably if the mode numbers can be estimated in advance.
In such cases the WKB (after Wentzei-Kramers-8rillouin and others) method can be used to obtain

formulae which, aithough they are approximate’', are given in closed form.

In this paper, formulae based on WKB solutions are presented for the number of modes
trapped in some simple sound channels and for the wave numbers and cutoff frequencies
associated with these modes. The number of trapped modes is shown to depend on the gross
features of the sound channel, while the distribution of mode wavenumbers depends to a greater
degree on the details of the profile shape. Resuits are presented for the square (isoveiocity-
channel) profile, the parabolic profile, and the bilinear profile. An example shows how the simpie
formulae can be applied to a realistic ocean environment.

While the analysis is presented in terms of underwater acoustics, the resuits are applicable
to other areas, such as transmission in an inhomogeneous waveguide or to the solution of the

Schrodinger equation. Most of the resuits presented here have been known for some timez. but
what is new is that the formulae for some of the more complicated waveguides can be put in the
same functional form as the weil known formulae for the ideal waveguide. The physical
parameters, such as frequency, depth, and sound speed are easily distinguished from the details
of the shape of the sound speed profile, which can be treated as a dimensionless quantity. The
very simple form of the expressions makes them useful for back of the envelope calculations or for
use with a pocket calculator. Moreover, using the same functional form for the expressions allows
the effect of the shape of the sound speed profile to be easily seen.

2 The normal mode equation

The normal mode equation can be written as,

L

L3S

5 u"(2) + [W2/e3(2)-k3u,(2) = 0 €}
n

)

o

F_-.“ where,

peamey

o 2 is the depth coordinate (increasing with depth from the surface),
:-:'._'- w = 27f is the angular frequency,

" c(2) is the sound speed as a function of depth,

= k, is the wave number or eiganvaiue,

o u,(2) is the normal mode function,

and u" denotes the second derivative of u with respect to 2.
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In general one wants to determine the normal mode wave numbers k, and the associated

mode functions u,(z), subject to certain boundary conditions. Notice the quantity [W2/c?(z)-k?]
which will be important in the discussion later; in particular, it is equal to zero at a turning point,
where W/¢(2) = k,,.

0 r c2)
1

Figure 1. Normal mode solution (heavy dashed line) superimposed on a sound speed profile
(heavy soild line).

Figure 1 shows a sound speed profile (heavy solid line) with a normal mode function (heavy
dashed line) superimposed (with arbitrary amplitude) at the appropriate phase velocity v, = W/k,.
Notice a number of things about the mode function:

1) At the turning points 2, and z;, w/c(2y) = W/e(2;) = k,. These are the
classical turning points for the equivalent ray travelling in the sound channel.

2) At the air-water interface the prassure, and hence the mode function, is
zero; i.e. u,(0) = 0.

3) Between O and z; the normal mode function has an increasing
sxponential type of behaviour.

4) Between 2, and = the soiution has a decreasing exponential type of
behaviour.

§) Between 2, and 2, there are three zero crossings since this is the
fourth mode; (in general the n-th mode will have n-1 zero crossings).

Furthermorse, note the sinusocidal behaviour between 2, and z,; note aiso that u, = sin(7/4) at
the upper turning point and u, = sin(n-1/4)T at the lower turning point.
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3 The WKB method

It the sound speed profile is changing siowly with respect to an acoustic wavelength, the
WKB approximation' allows the solution to be written in terms of a siowly varying amplitude r(z)
and a monotonircaily increasing phase ¢(2):

uy(2) = M r(2) sin{¢(2)] (2)
where
n(z) = [w?/c3(z) - K3T1/4 (3)
2
#(2) = / [w3/c¥(2') - k3]V2dz' + 8,, 2,<2<2, (a)
24

and M is a normalization constant. The integral in Eq. (4) will be referred to as the phase integral.
Note several points:

1) the term in square brackets is the same term that appeared in Eq. (1).
2) near a turning point r(2) is singular.

3) ¢(2) is well behaved, howsver, and can be used to determine the WKB
eigenvalues k,.

4) ¢(z,) = 5, at the upper turning point.
5) #(2;) = nr-5, at the lower turning point.

Figure 2 shows how the phase 8, at the upper turning point depends on boundary effects.
If the surface is a pressure release one, the pressure is zero, u,(0) = O and the phase §, = 0; if
the surface is rigid, the normal derivative of the pressure is zero, i.e. u,'(0) = 0, and the phase

8, =7/2. At a turning point the phase 8, is between O and 7/2; §, = /4 is the usual choice'.
The same comments apply to the phase at the lower turning point.

in the WKB method the total phase change between the turning points is given by:

22
/ [W2/c(2) - k3]V2dz + 8, + 8, = . (5)
2,

-




PRESSURE RELEASE RIGID TURNING POINT

8,*0 3!"/2 0<3|<'/2

Figure 2. Effect of various boundary types on the phase §.

where 3, and §, are the phases at the upper and lower turning points. With the usual choice of
8, =8, = /4 the WKB eigenvalue equation becomes

22
/ (w3/c3(2) - k3]"/2dz = (n-1/2)7 (6)
z,

0 Cm Cy C2) O

b .

(a)

Figure 3. Three simple sound channel! shapes: (a) the square isoveiocity~channel profile,
(b) the parabolic sound channel, and (c) the bilinear sound channel.
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One wishes to solve equation (8) for k, which appears explicitly in the integrand and
implicitly in the limits 2, and z,. However, for certain sound speed profiles c(z) the integrai can be
evaiuated analytically and an expression obtained for k,. Three such sound speed profiles are
shown in Figure 3 : (a) the square isovelocity-channei profile, (b) the parabolic sound channel, and

: . (c) the bilinear sound channel. Note that it is actuaily ¢*2 rather than ¢ which is parabolic or linear.
(3 Some notation is aiso introduced at this point: ¢, = the minimum sound speed in the channel, ¢, =

the maximum sound speed in the channei, and h = z;-z, = the maximum vertical extent of the sound
channel.
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4 The number of trapped modes

The WKB eigenvalue aquation can be soived for the number of trapped modes N if the phase
integral can be evaiuated either anaiytically or numerically. Using n=N, z, =2, 2, = 2, ky = w/c.

and rearranging Eq. (6) gives h = 2, - 2, and x = 2/h:
1
N = 1/2 + (2nt/c,)[1-c2/c?'/? / {[e2/c(x)-c3/c/[1-c2/c2)}'/2 dx n
0

By introducing the dimensionless quantities

a=1-c3/ci'? (8)
and
1
as / { [e3/c(x)-c2/cq/[1-c3/cd)) V2 ax (9)
(o)
equation (7) can then be written as
Ns=1/2+(2nt/c,)aa (10)

The quantity a is introduced strictly for notationali convenience. The quantity a, however. is
related to the shape of the sound speed profile, but contains none of the physical parametars
such as the frequency, depth or sound speeds. Note that in the case of an isovelocity or square
profile @ = 1, and Eq. (10) gives the classical formuia for the number of trapped modes. Figurs 4
graphically illustrates the significance of the integral in Eq. (9), where the vertica! extent of the
channel 2; - 2, gets mapped into the range O to 1, and where the sound speeds between c,, and ¢,

get mapped into O to 1 and where the integrand of Eq. (9) (denoted by g(x) ) is enclosed in a

square box of unit size. The integral a is given by the shaded area, which can be caiculated
analyticaily or numericaily or even estimated by eye.
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Figure 4. The sound channel and the associated function g(x); the shaded area a is defined
in Eq. (9).

§ Cutoff frequencies

The cutoff frequency for the n-th mode can be obtained by rearranging Eq. (10) to give

3 2 [c,(n-1/2)] / [2haa] (11)

8 Wave numbers

For the three sound speed profiles shown in Figure 3, the eigenvalue equation (8) can be
soived for the wavenumbars k., giving resuits of the form

k2 = W2/c2 - A(n-1/2)° (12)

where the specific vaiues of A and p are given in Table 1. For the three profiles considered p
varies between 2/3 and 2, while the corresponding vaiues of the shape parameter a varies only
between 2/3 and 1. Moreover, a enters aquations (10) and (11) in a linear fashion, while p

appears as an exponent in equation (12). Thus, the wave numbers are much more sensitive to the
profile shape than are the trapped modes and the cutoff frequencies.
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Table 1

Specific values of a, p and A for three simpie profiles,

Profile Shape a p A
Square 1 2 (r/h)?
Parabolic m/4 =079 1 4aw/(cy,h)
Bilinear 2/3 2/3  [3rw2a?/(2¢2n)]?/3

7 Example

Tabie 2 shows an example of how the formulae might be appiied to a realistic ocean
environment, and compares the wave numbers with those obtained from a normal mode calculation.
The sound speed profile approximates a typical summer sound speed profile in 100 m of water on
the Scotian Sheif: a 20 m isovelocity layer of speed 1520 m/s at the surface, a minimum sound
speed of 1460 m/s at a depth of 40 m, and a speed of 1490 m/s at the bottom. The table
compares the wave numbers, or phase velocities, obtained using the bilinear formula with those
from a complete normal mode calculation at 200 Hz.

Table 2
Comparison of the phase velocities obtained from equation (12)

with those from a complete normal mode calculation.

Mode Number Phase Velocities (m/s)
Normal mode Equation (12) Difference

1 1466.72 1466.46 -0.26
2 1471.34 1471.43 0.08
3 1475.99 1476.15 C.16
4 1480.13 1480.29 0.16
5 1484.94 1484.09 0.18
6 1487.48 1487.63 0.15

The WK3 method gives a good approximation to the normal mode wave numbers; four or five
digits accuracy as in the above example is not unreasonable. in fact for the parabolic profile the
WKB and exact caiculations give the identical results. Provided that this is of sufficient accuracy,
the value of the anaiytic formula is obvious from a computational point of view.

8 Discussion

Equations (10)-(12) together with the vaiues of a, p and A given in Tabie 1 summarize the
resuits of this paper: simple anaiytical formulae for normai mode wave numbers, cutoff frequencies,
and the number of modes trapped in a sound channe! of simple shape. The factor of 1/2 appearing
in Eqs. (10)-(12) can be generalized to a 5 which depends on the boundaries of the sound channel
as well as the type of turning point that the mode "sees". Equations (10) and (11) for the number
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of modes and the cutoff frequencies are useful for more general profiles provided that the integral
of €a. (9) can be estimated.

The resuits show the sensitivity of the modes to the shape of the sound speed profile: the
number of modes depends on the shape parameter a of the sound speed profile, while the
distribution of mode numbers is more sensitive to the details of the profiie shape.
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